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Abstract. The efficiency of alpha-beta search algorithms heavily de-
pends on the order in which the moves are examined. This paper in-
vestigates a new move-ordering heuristic in chess, namely the Neural
MoveMap (NMM) heuristic. The heuristic uses a neural network to es-
timate the likelihood of a move being the best in a certain position.
The moves considered more likely to be the best are examined first. We
develop an enhanced approach to apply the NMM heuristic during the
search, by using a weighted combination of the neural-network scores
and the history-heuristic scores. Moreover, we analyse the influence of
existing game databases and opening theory on the design of the training
patterns. The NMM heuristic is tested for middle-game chess positions
by the program CRAFTY. The experimental results indicate that the
NMM heuristic outperforms the existing move ordering, especially when
a weighted-combination approach is chosen.

1 Introduction

Most game-playing programs for two-person zero-sum games use the alpha-beta
algorithm. The efficiency of alpha-beta is closely related to the size of the ex-
panded search tree and depends mainly on the order in which the moves are
considered. Inspecting good moves first increases the likelihood of cut-offs that
decrease the size of the search tree.

For move ordering, the existing programs frequently rely on information
gained from previous phases of the search. Major examples of such information
support are transposition tables [1] and the history heuristic [2]. Additionally, the
original move-ordering techniques which are independent of the search process
are still valid. In chess, for example, checking moves, captures and promotions
are considered before ‘silent’ moves.

The search-independent move-ordering techniques are usually designed based
on information provided by a domain expert. Recently two attempts were pro-
posed to obtain a better move ordering by using learning methods. The chess-
maps heuristic [3] employs a neural network to learn the relation between the
control of the squares and the influence of the move. In a similar way, we trained
a neural network to estimate the likelihood of a move being the best in a certain
position [4]. We termed this technique the Neural MoveMap (NMM) heuristic.
There are two main differences between the chessmaps heuristic and the NMM
heuristic. First, in the chessmaps heuristic the neural network is trained to eval-
uate classes of moves, while in the NMM heuristic the neural network is tuned
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to distinguish between individual moves. Second, in the chessmaps heuristic the
target vector represents the influence of the move on the squares of the board,
while in the NMM heuristic the target information for a neural network is the
likelihood of the move being the best in a certain position.

The training information of the NMM heuristic shares common ideas with
the comparison paradigm [5, 6] developed for learning evaluation functions. In
the original version designed by Tesauro, a neural network is trained to compare
two board positions. The positions are encoded in the input layer, and the output
unit represents which of the two is better. The comparison paradigm was also
employed to evaluate moves in Go [7]. Accordingly, a neural network was trained
to rate the expert moves higher than random moves. The technique is not efficient
for move ordering in a search-intensive game program due to speed limitations.

In [4], we presented the results of the NMM heuristic in the game of Lines
of Action (LOA). The promising results were confirmed when the heuristic was
tested in MIA [8], one of the top LOA programs. The reduction of the search tree
was more than 20 percent, with an overhead of less than 8 percent [9]. Despite
this success, it was unclear how the NMM heuristic performs when it is included
in tournament programs for more complex and, especially, more studied games.
In this article we investigate the performance of the NMM heuristic in chess
by inserting the move ordering in the strong tournament program CRAFTY [10].
In LOA, we inserted the NMM heuristic in the search by replacing the move
ordering of the history heuristic by that of the neural network. In this article we
improve upon this approach. Chess, compared to LOA, has two extra features
that can influence the training of the neural network: the existence of game
databases and the advanced opening theory. In the experiments we analyse the
choices resulting from these two features too.

The article is organized as follows. Section 2 describes the NMM heuristic.
The experimental set-up for evaluating the efficiency of the NMM heuristic is
described in Sect. 3. The experimental results are given in Sect. 4. Finally, Sect. 5
presents our conclusions.

2 The Neural MoveMap Heuristic

For the NMM heuristic, a neural network is trained to estimate the likelihood of
a move being the best in a certain position. During the search, the moves con-
sidered more likely to be the best are examined first. The essence of the heuristic
is rather straightforward. However, the details of the heuristic are complex since
they are crucial for the heuristic to be effective, i.e., to be fast and to result in
a small search tree. The details include: the architecture of the neural network
(Sect. 2.1), the construction of the training data (Sect. 2.2) and the way the
neural network is used for move ordering during the search (Sect. 2.3).

2.1 The Architecture of the Neural Network

For the game of LOA, we analysed several architectures for the neural network
[4]. We found that the best architecture encodes the board position in the input



156 Levente Kocsis et al.

units of the neural network and uses one output unit for each possible move
of the game. A move is identified by its origin and destination square (i.e., the
current location and the new location of the piece to move). The activation value
of an output unit corresponding to a move represents the score of that move.
The other analysed architectures include a more compact representation of the
moves, either in the input or in the output of the neural network.

The same move encoding can be used for chess. In the case of LOA, we
assigned one input unit to each square of the board, with +1 for a black piece,
−1 for a white piece and 0 for an empty square. In chess there are more piece
types, and consequently we assign 6 input units (one for every piece type) to each
square. An additional unit is used to specify the side to move. Consequently, the
resulting network has 385 (6×64+1) input units and 4096 (64×64) output units.

Although the network is very large, the move scores can be computed quickly,
since we have to propagate only the activation for the pieces actually on the
board, and to compute only the scores for the legal moves. To increase the speed
further, in the case of chess we removed the hidden layer, present in the network
used for LOA. For LOA, we already noticed that in this architecture the hidden
layer is not increasing significantly the performance [4]. This way, the resulting
move ordering requires just a little extra computation during the search, namely
a summation over the pieces on the board.

2.2 The Construction of the Training Data

The neural network described in Sect. 2.1 performs a linear projection, and any
learning algorithm should thus be reasonably fast. Consequently, we can use any
of the existent learning algorithms for neural networks without influencing sig-
nificantly the training. However, the choice of the training data is an important
issue. A training instance consists of a board position, the legal moves in the po-
sition and the move which is the best. From these three components, determining
the legal moves by an algorithm poses no problem. The choices on the other two
components are more difficult. There are two questions to be answered: “Where
are the best moves coming from?” and “Which positions should be included in
the training phase?”

In each training instance, one of the legal moves is labeled as the best. The
labeling can have two sources: (1) the move played in the game (as specified in
the database), (2) the move suggested by a game program (the one that will
use the neural network for move ordering). If we choose the second source, the
neural network might be able to incorporate the program’s bias (e.g., preference
to play with bishops). The second source has, however, the disadvantage of the
extra computation needed for analysing all the positions, since, as observed for
LOA, a large number of positions have to be used to obtain good results. In the
experimental section, we examine both sources.

Chess games are usually divided into three phases: opening, middle game
and endgame. In each of these phases different strategies are used. We focus
on middle-game positions. There the original opening usually has a substan-
tial influence on the strategies employed by chess players. In the experiments,
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we investigate whether it is better to have opening-specific neural networks, or
whether it is sufficient if only one network is used for all middle-game positions.
The training positions originate from game databases either clustered by opening
or collected in a mixed form.

2.3 Using the Neural Network during the Search

When the neural network is used during the search the moves are ordered ac-
cording to the network’s estimation of how likely a certain move is the best. The
move ordering has to be placed in the context of the move orderings already
existent in the game program. In the following, we describe three approaches to
include the neural network in the search: the pure neural-network approach, the
straightforward-combination approach, and the weighted-combination approach.
These approaches deal only with the moves that would be ordered by the history
heuristic.

Pure Neural-Network Approach: The first approach to use the neural net-
work during the search is by replacing in every node of the search tree the move
ordering of the history heuristic by that of the neural network. In the following,
we refer to this approach as the pure neural-network approach. This approach
was tested for LOA [4].

Straightforward-Combination Approach: The move ordering of the neural
network and that of the history heuristic are not necessarily mutually exclusive;
they can be combined. Hence, the second approach investigated in this article,
the straightforward-combination, is as follows. We first consider the move rated
best by the neural network followed by the moves as ordered by the history
heuristic (of course, excluding the move picked by the neural network).

Weighted-Combination Approach: The history-heuristic score is built up
from information collected during the search process. Therefore, it has a dynamic
nature, but it has no specific connection with the position under investigation. In
contrast, the scores suggested by the neural network are specific to the position;
they are static, and do not gain from the information obtained in the current
search process. In principle, a combination of the two scores can benefit both
from information obtained in the search, and from information obtained off-
line by analysing a large number of positions. Such a combination can be more
suitable for the position in which the moves have to be ordered.

One way to combine the history-heuristic score and the neural-network score
is by adding them. Since the two scores are not in the same range at least one
of them has to be scaled.

The distribution of the neural-network scores is specific to a certain neural
network and does not depend on the search depth or opening line of a posi-
tion1. A sample distribution is given in Fig. 1, left. The neural-network scores
1 Although the independence of the opening line might seem counter-intuitive, this is

what we observed experimentally.
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Fig. 1. The distribution of scores for the neural network (left) and the history heuristic
(right).

are approximately normally distributed, and centered around a negative value,
since most moves are not considered to be best. The history-heuristic scores
are known to become larger as the search progresses. One way to normalize the
history-heuristic scores is to divide them by the total number of history updates.
After this normalization, the history-heuristic scores in the different parts of the
search tree are approximately in the same range. However, they are still in a
range different from the neural-network scores. Therefore, we divide the normal-
ized history-heuristic scores by a coefficient that we term the history weight.
The resulting distribution, using the value 500 for the history weight (see below
and Sect. 4.2), is plotted in Fig. 1, right. The history-heuristic scores are only
positive, and the peak is concentrated near 0, since most of the moves rarely
produce a history update during the search. A second possibility for normaliz-
ing the history-heuristic scores is by dividing them by the standard deviation
amongst the scores in the current position. Experimentally, we observed that
the two choices to normalize the history-heuristic scores lead to similar perfor-
mances. Since the second one is computationally more expensive than the first
one (we have to compute the standard deviation in every position), we choose
to normalize by the number of updates.

In conclusion, the score used to order the moves (movescore) is given by the
following formula:

movescore = nnscore +
hhscore

hhupdate × hhweight

where nnscore is the score suggested by the neural network, hhscore is the
original history-heuristic score, hhupdate represents the number of times the
history table was updated during the search, and hhweight is the history weight.

To use the above formula for the move score we have to choose a value for
the history weight. Choosing the proper value may have an important effect on
the performance of the weighted-combination approach. If the weight is too large
or too small, only one of the components of the score has influence. This effect
might be beneficial in certain positions (or parts of the search tree), where one
of the move-ordering methods performs poorly, but overall it is not desirable.
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In essence, there are two ways to set the history weight. The first one is using
off-line experiments with different values, and choosing the value leading to the
best performance in these experiments. The second one adapts the weight during
the search. Such an adaptive method is outlined below.

In the case of a good move ordering, the moves causing a cutoff are inspected
early. Consequently, we can use the situation when the cutoff appears later as
an error signal to modify the value of the history weight during the search. If
the move causing a cutoff was considered later because both the neural network
and the history heuristic scored it low, nothing could have been done. However,
if, for instance, the neural network considered the move as promising, but it
was scored overall lower than some other moves because the history heuristic
scored it low, the history weight should be increased. The situation when the
neural network scored a move producing a cutoff high, and the history heuristic
low, we term it an nn-miss. The situation when the history heuristic scored the
move high, but the neural network low, we term it an hh-miss. In the case of an
nn-miss the history weight is increased by a small value βnn, and in the case of
an hh-miss the history weight is decreased by a small value βhh. Depending on
the update values, the history weight will converge to a value where the updates
are balanced (∆hhweight = 0), or the ratio between the number of nn-miss
(n nnmiss) and the number of hh-miss (n hhmiss) is inversely proportional to
the ratio between the two update values:

n nnmiss× βnn = n hhmiss× βhh.

The exact values of βnn and βhh usually do not have a significant effect on the
performance. They should have relatively small values (e.g., 0.1), in order to pre-
vent large oscillations of the history weight, and should have similar magnitude
(possibly equal) to give the same emphasis to both components.

3 Experimental Setup

In the experimental set-up we distinguish three phases: (1) the construction
of the various pattern sets, (2) the training of the neural networks to predict
the best move, and (3) the evaluation of the search performance of the move
ordering.

In the first phase we construct the pattern sets. They consist of a board
position, the set of legal moves, and the best move. To construct a pattern set
we have to select the positions, to generate the legal moves in the selected po-
sitions, and to label one of the legal moves as best. The middle-game positions
are selected from game databases, classified by opening. The legal moves are
generated using a standard move-generation routine. A move is labeled best by
one of two sources: by the choice of the player as is given in the game database,
or by a game-playing program. For the latter, we employ CRAFTY with 2 sec-
onds thinking time (approximately a 7-ply deep search). For the training in the
second phase, we need three types of pattern sets: a test set to evaluate the move-
ordering performance, a validation set for deciding when to stop the training,
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Table 1. Opening lines of the learning sets.

Code Encyclopedia Number of Name of Opening Line
Code Positions

A30 A30 122,578 Hedgehog System of English Opening
A3x A30-A39 685,858 Symmetrical Variation of English Opening
B84 B84 92,285 Classical Scheveningen Var. of Sicilian Defense
SI B80-B99 1,793,305 Sicilian Defense (Scheveningen, Najdorf)

D85 D85 124,051 Exchange Variation of Grünfeld Indian
GI D70-D99 745,911 Grünfeld Indian
E97 E97 111,536 Aronin-Taimanov Variation of King’s Indian
E9x E90-E99 865,628 Orthodox King’s Indian
KI E60-E99 2,498,964 King’s Indian

ALL A00-E99 4,412,055 all openings

and a learning set to modify the weights of the neural networks. For our experi-
ments, we construct four test sets, originating from the opening lines A30, B84,
D85 and E97 [11]. Each of these sets consists of 3000 positions. To each test set
corresponds a validation set taken from the database with the same opening line
as the test set. These sets also consists of 3000 positions. The positions from the
test sets and the validation sets are different. The learning sets are taken from
the same opening line as the corresponding test set or from a more general one
(see below). Each learning set, except ALL, includes all available middle-game
positions from its opening line excluding the positions in the test and validation
sets. The learning set ALL includes 10 percent of the positions from all opening
lines. For instance, the test set A30 has three corresponding learning sets: A30
with 122578 positions, A3x with 685858 positions, and ALL with 4412055 po-
sitions (see Table 1). Analogously, test set E97 has four corresponding learning
sets: E97, E9x, KI and ALL (see Table 1). Other details on the learning sets are
given in Table 1.

During the second phase, the neural networks are trained to predict whether
a certain move is the best. The learning algorithm used is RPROP [12], known
for its good generalization. Like most of the supervised-learning algorithms for
neural networks, RPROP also minimizes the mean square of the error (i.e., the
difference between the target value and the output value). In RPROP, however,
the update of the weights uses only the sign of the derivatives, and not their
size. RPROP uses an individual adaptive learning rate for each weight, which
makes the algorithm more robust with respect to initial learning rates.

The error measure for evaluation and for stopping purposes is the rate of not
having the highest output activation value for the ‘best’ move. In each epoch the
entire learning set is presented. The neural network updates the weights after
each epoch (i.e., batch learning). The error on the validation set is tested after
each update. The training is stopped if the error on the validation set did not
decrease after a certain number of epochs. In this phase we observe how often
the neural network predicts the best move. For a tournament program, however,
it is more important how the neural network is behaving during the search.
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The third phase evaluates the information gained about the performance of
the neural network. In this phase we measure the size of the search tree inves-
tigated using the neural network for move ordering. For this purpose we insert
the neural network in the move ordering of CRAFTY and collect the statistics for
search with various depths. In an internal node, CRAFTY considers subsequently
(1) the move from the transposition table, (2) the capture moves, (3) the killer
moves and (4) the remaining moves sorted according to their history-heuristic
scores. In the following, we refer to this move ordering as the reference move or-
dering. In this list we insert the predictions of the neural-network moves, using
one of the three approaches described in Sect. 2.3. The performance of a neural
network is measured by dividing the size of the investigated search tree by the
size of the investigated search tree without neural-network move ordering. The
search performance is measured using various sets of test positions. The set of
positions employed in this phase is identical to the positions from the test sets
used in the training phase.

4 Experimental Results

Section 4.1 deals with the choices on the construction of the pattern sets. In
particular, the choices to be made are on the best move and on the positions.
Section 4.2 compares the three approaches in which the neural networks are in-
cluded in the search. The results of this subsection also evaluate the performance
of our move-ordering technique in comparison with the existing techniques. Sec-
tion 4.3 gives insight into the predictive quality of the neural networks. Although
the predictive quality is not the main evaluation criterion (the size of the inves-
tigated search tree is the main criterion), it highlights some of the strengths
and weaknesses of the neural networks trained for move ordering. Moreover, an
example is given for illustration.

4.1 Choices on the Construction of the Pattern Sets

The open questions on the construction of the pattern sets posed in Sect. 2.2
are about the source of the best move and the selection of the positions. Below,
we describe two preliminary experiments addressing the questions. Experiment
1, called Game vs. CRAFTY, compares two sources of the best move: by taking
the move from the game database and by taking CRAFTY’s move. Experiment
2, called Specific vs. General, compares more opening-specific learning sets (e.g.,
E97) with more general learning sets (e.g., E9x, KI or ALL).

The different choices lead to different neural networks. As a measure to com-
pare the different neural networks we take the search performance (i.e., the
size of the search tree investigated using the neural networks for move order-
ing). Out of the three approaches to include neural networks in the search
(described in Sect. 2.3), we only use the pure neural-network approach and
the straightforward-combination approach. The weighted-combination approach
needs additional computation to obtain the history weight, and therefore we
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Fig. 2. Training the neural networks on game moves or on CRAFTY moves.

leave it out for the two preliminary experiments. In Figs. 2 and 3, the perfor-
mance is plotted as a function of the search depth. The performance is defined
as ncount(.)/ncount(HH)—the size of the search tree when the neural network
is included divided by the size of the search tree investigated with the reference
move ordering.

Game vs. CRAFTY: The first experiment is on the source of the best moves.
It gives insight into the choice between the game database move and the move
suggested by CRAFTY as training target. For this purpose we use the test set
E97 with two learning sets: E97 and E9x. First we focus on the learning set
E97. We label the moves of E97 either by the moves from the game database
or by CRAFTY’s suggestions. Doing so we obtain two learning sets, and accord-
ingly, after the training process, two neural networks (one for each learning set).
The search performances corresponding to the two neural networks are plotted
in Fig. 2, left. The graph shows the search performance as a function of the
search depth for the neural network trained with the learning set labeled either
by CRAFTY or by the game database. Since we are using either the pure neural-
network approach or the straightforward-combination approach, we have four
curves. Similarly, Fig. 2 (right) shows the search performances corresponding to
the learning set E9x. We observe that if the pure neural-network approach is
used, the CRAFTY labeling is beneficial for both E97 and E9x, since it investi-
gates a smaller search tree. If the straightforward-combination approach is used
the advantage disappears. Since the CRAFTY labeling process is very time con-
suming2 (especially for larger learning sets), we conclude that it is not useful to
label the positions with a game program, and it is preferable to use the moves
from the game database. The following experiments are using only the moves
resulting from the original games (as given in the game database).

Specific vs. General: The second experiment is designed for giving an answer
on how specific the learning set should be. Next to the two neural networks
resulting from E97 and E9x, we trained two more neural networks with learning

2 E.g., to label E9x we needed 20 days.
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Fig. 3. Training sets varying from specific to general.

sets KI and ALL (using again E97 as test set). Out of the four sets the most
specific learning set is E97, and then in this order E9x, KI, and ALL. The search
performances for the four neural networks are plotted in Fig. 3. The performance
of the neural networks corresponding to the learning sets E9x, KI and ALL are
roughly equal. The neural network corresponding to the most specific learning
set (E97) is performing worse than the other three for both the pure neural-
network approach (Fig. 3, left) and the straightforward-combination approach
(Fig. 3, right). The results suggest that using more specific learning sets does
not improve the performance. For very specific sets, the performance may be
decreased due to the lack of sufficient training data (in the case of E97: 111,536).

4.2 Comparison of the Three Neural-Network Approaches

In this subsection we compare experimentally the three approaches to include
the neural network in the search. As a reference value, we also compare these
approaches to the reference move ordering. To gain an even better picture on
the performance of the new move-ordering techniques we use three more test
sets (A30, B84 and D85), next to E97. For each of the four test sets (A30, B84,
D85 and E97) a specific (A3x, SI, GI and E9x) and a general (ALL) learning
set is used. With these learning sets, we obtain four neural networks specific
to a certain test set and a neural network common to all test sets. The search
performance is measured in the same way as in Sect. 4.1.

According to the pure neural-network approach and the straightforward-
combination approach the neural networks can be included in the search directly.
Thus the corresponding performance can be measured without any preparation.
However, to measure the search performances for the weighted-combination ap-
proach, we first have to determine the history weight.

As described in Sect. 2.3, the history weight can be set according to two
methods, either off-line or during the search. For the first method, we have to
measure the search performance corresponding to different values of the his-
tory weight. Below we illustrate this mechanism for test set E97. Figure 4 plots
the performance for different history-weight values, using the neural networks
trained either with E9x (the left graph in Fig. 4) or with ALL (right). The
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Fig. 4. Varying the history weight. The performance is plotted for the E97 test set
using two neural networks, E9x and ALL, and five search depths, from 7 to 11.

five curves correspond to the performances obtained for search depths 7 to 11.
The best value for the history weight is the one that corresponds to the best
search performance (i.e., the lowest point for a certain curve). We observe that
the best history-weight value is not changing drastically with search depth. It
does, however, change with the neural network3. The reason for this is that the
best history weight is inversely proportional to the standard deviation of the
neural-network scores. As measured experimentally, the standard deviation for
E9x is almost twice as large as the standard deviation for ALL, and thus the
best history weight for E9x is roughly the half of the best value for ALL.

For the second method, i.e., when setting the value for the history weight dur-
ing the search, using the update rules described in Sect. 2.3, we noticed that the
history weight does indeed converge to a value where the equilibrium equation
holds. The search performances are similar to the performances corresponding
to the best static history weights from Fig. 4.

Using the value for the history weight obtained according to one of the above-
mentioned methods, we measured the performance of the weighted-combination
approach and compared it to the pure neural-network approach and the straight-
forward-combination approach. The performances of these approaches using the
neural networks mentioned earlier are plotted in Fig. 5 (for test sets A30, B84,
D85 and E97 separately). In the graphs, the search performance of the refer-
ence move ordering has the value of 1. From the reference move ordering, the
neural-network approaches are replacing the history heuristic. Henceforth their
performance is compared to that of the history heuristic. We observe, that the
pure neural-network approach has a slight advantage over the history heuristic
for very shallow searches (depth 3 or 4), then it has a slight disadvantage for
medium depths (5 to 9), and finally again better results for depths 10 or 11.
Interestingly, a similar shape (although with different values) was observed for
LOA in [4]4. The straightforward-combination approach outperforms the his-

3 An appropriate history weight value for E9x is 300, and for ALL is 500.
4 The reason for this particular shape is unclear to us. It might be due to some

properties of the history heuristic.
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Fig. 5. Comparing the three move orderings using the four test sets (A30, B84, D85
and E97).

tory heuristic with a slight margin (approximately 1 percent) for search depths
3 to 9 and with an increasing amount for depths 10 and 11 (3 to 8 percent).
The weighted-combination approach outperforms all the other ones on all test
sets and search depths. The reduction compared to the history heuristic ranges
between 5 and 10 percent for the largest search depth investigated.

The time overhead for the approaches using neural networks, compared to
the reference move ordering, is approximately 5 to 8 percent. However, this value
can be decreased by not using the neural network for move ordering close to the
leaves. The performance loss in this case is negligible (less than 1 percent).

4.3 Predictive Quality of the Neural Networks

In this subsection, we provide some more insight into the predictive quality of
the neural networks. In order to test the predictive quality, we measure how often
the move made in the game is considered to be the best by the neural network.
The neural networks used for testing are those from Sect. 4.2. The results are
presented in Table 2. In the table, beside the success rate of the networks trained
on specific learning sets and the ALL learning set, CRAFTY’s predictive quality
is also listed for comparison purposes. We observe that the networks are able to
predict the game move in one out of three positions. This performance is almost
as good as that of CRAFTY with a 7-ply deep search.
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Table 2. Rate of correct predictions of the neural networks without any search and of
CRAFTY using 7-ply searches.

test set specific learning set learning set ALL CRAFTY’s prediction

A30 0.33 0.32 0.39
B84 0.36 0.33 0.40
D85 0.35 0.31 0.45
E97 0.39 0.34 0.37

Fig. 6. A position from the Kramnik-Anand game played in Dortmund, 2001 (WTM).
Kramnik’s move was h6. The move ordering of the neural network: Qb4 Ne5 Bf6 a3 h6
Qh3 Bb1 Bh6 Nd4 b3 Qd4 Bb3 Rd3 Qg3 Re2 Rb1 Bc1 Bg6 Rd5 Bf5 Qf4 Re3 Rf1 Bf4
Qg4 Kh1 Kf1 Re7 h3 Bd3 Ra1 Bd2 Re5 Rc1 Re6 Bh7 Rd2 Re4 Ba4 Be3 a4 Kg2 Be4
Nd2 Qe4 Rd4 Qc4.

Below we illustrate this success by an example. Other example positions are
given in the Appendix. The position in Fig. 6 is encountered between two of the
best chess players, Kramnik and Anand. It is an open position, with some threats
by White on the king side. The move made by Kramnik (h6), forces Black to
a line of exchanges that leads in the end to an inferior ending. Without search,
for the neural network the complications on the board are hidden, of course. Its
main tool is to look for similarities between this position and the positions seen
during the training, respectively between the legal moves in this position and
the moves labeled best in the learning set. Most of the pieces in this position are
in familiar places. However, the move made by White is not frequent at all in
middle-game positions. Remarkably, the neural network still scores the move in
the top five. Some other promising moves, like Ne5, Bf6 and Qh3 are also scored
high.

5 Conclusions

This paper investigates the use of a new move-ordering heuristic, the Neural
MoveMap heuristic, in chess. The heuristic uses a neural network to estimate the
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likelihood of a move being the best in a certain position. The moves considered
more likely to be the best are examined first. The move ordering was tested
for middle-game positions using the chess program CRAFTY. We explored the
various details of the NMM heuristic, developing a new approach to include the
neural network in the search, the weighted-combination approach.

Construction of the Pattern Sets: The preliminary experiments dealt with
the details of the construction of the pattern sets. From the experiments we
conclude that labeling with CRAFTY is not giving advantage over the choice
of using the moves from the game database. This is especially true if a more
advanced approach is used to include the neural network in the search. Because
of the extra time required by the labeling process, using the game moves is to
be preferred. A second conclusion is that, although it seems counter-intuitive,
using learning sets specialized on opening lines is not improving the performance.
Since training one neural network instead of many (one for each opening line) is
faster, and using one neural network during the search is also more convenient
than to use many, we conclude that using a single general neural network is
the preferable solution. In summary, we have to train one neural network with a
learning set resulting directly from the game databases. Thus, the training phase
can be done in a relatively short time.

Search Performance: In the main experiments we investigated the approaches
to use the neural network during the search. We designed three approaches: the
pure neural-network approach, the straightforward-combination approach, and
the weighted-combination approach. These approaches were also compared to
the reference move ordering of CRAFTY. Although for shallower search depths
the pure neural-network approach investigated slightly larger trees, for deeper
searches it proved to be superior to the reference move ordering. The two ap-
proaches that combine the neural network and the history heuristic improve upon
the reference move ordering for all investigated search depths. The node reduc-
tion increases with deeper searches. Out of the two combinations, the weighted-
combination approach leads to better results.

If we compare the performance of the Neural MoveMap heuristic in chess to
that in LOA, we conclude that the heuristic is more beneficial in domains where
there is little human knowledge on how to order the moves, but even in the
presence of this knowledge, it results in a notable improvement over the existent
techniques.

Both for LOA and chess, we introduced the NMM heuristic as an alternative
to the history heuristic. When a game programmer decides between these two
heuristics, other issues than performance have to be considered. In the following
we describe the differences between the two heuristics in terms of these issues.
The history heuristic is trivial to implement and requires little tuning. The NMM
heuristic is more difficult to implement and requires a training phase. Neither of
the two heuristics require game-dependent knowledge. In the initial development
cycle speed of implementation is very attractive. In this cycle, the program is not
well-tuned yet, and the NMM heuristic is likely to have a more significant impact
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on the performance. Consequently, there is a trade-off between the two heuristics.
In the later cycles, when the program is well developed, the performance is the
most important issue for selecting the move-ordering heuristic. Therefore, the
NMM heuristic should be preferred.

Predictive Quality: The predictive quality of the neural networks is surpris-
ingly good, almost as good as a full search of CRAFTY. This suggests that the
neural networks can be used for forward pruning too, in a similar way as in
[13] for LOA. Such a forward-pruning algorithm for chess has to be developed
in more detail. A promising line of research in this respect is the search control
mechanism designed in [14].
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Fig. 7. An early middle-game position from the E97 test set (WTM). The ‘theoretical’
moves are Nd2, Nd4, cd6, a4, and h3. The move ordering of the neural network: Nd2
cd6 Nb5 Nd4 e5 Qd2 a4 h3 Re1 a3 Qd4 Nh4 Qb3 b5 Qa4 c6 h4 Nb1 Qe1 Ne5 Ne1 Na4
Qd3 Ba6 Qc2 g4 Kh1 Nd3 Bb5 Ra1 Rb1 Rc2 Bc4 g3 Ng5.

Fig. 8. A position close to the endgame from the D85 test set (BTM). The move made
in the game was Kf8. The move ordering of the neural network: Rb2 Rb1 Nb5 Rf8 Ne6
Rb3 Rb6 a5 Nc2 e6 Re8 Kg7 Rd8 g5 Ne2 e5 f5 Rb4 h6 f6 Nc6 h5 Kh8 a6 Nb3 Kf8 Nf3
Nf5 Rb5 Rc8 Rb7.

Appendix: Examples of Move Ordering
Using the Neural Network

In Figs. 7, 8 and 9, we illustrate some of the weaknesses and strengths of the
move ordering performed with the neural networks. The positions in the figures
were not included in the learning sets. The neural network employed to order the
moves was the one trained with positions resulting from all opening lines (ALL).
The first two positions are from the edges of the middle-game phase, illustrating
some interesting properties of these parts of the game. The third position is a
closed position from the ‘core’ of the middle game.

In the position in Fig. 7, an early middle-game position, the moves typical for
this line of opening are easy to recognize. Consequently, although the position
was never ‘seen’ by the neural network, the move ordering suggested is excellent,
rating the 5 ‘theoretical’ moves among the top 8 moves.

The second position (Fig. 8) is close to the endgame. Although, some of the
first-rated moves make some sense, the good moves (including the one made in
the game), are in the tail of the list. The shortcoming is resulting from the fact



170 Levente Kocsis et al.

Fig. 9. A position from a tournament game played by the first author (WTM). White’s
move Qg1 forces black to play a6, allowing Bb6. The move ordering of the neural
network: h4 Bb6 Qg1 Qb3 Re1 Nf4 Nb5 a6 Qd2 gh5 g5 Ne5 Bf1 Ba7 Bg3 Rc1 Kh2
Qc1 Ra3 Bh4 Qb1 Rf1 Na4 Rg1 Kf1 Rh2 Ra2 Rb1 Qf1 Ra4 Bd4 Be1 Qe1 Qc2 Bg1
Na2 Ne1 Nb1 Nc5 Qa4 Be3 Nc1 Bc5 b5 Kg1 Nb2.

that in the position the middle-game principles are not true anymore, and it
is completely natural to move the king closer to the center of the board. This
suggests that if too many simplifications were made, and especially if the queens
disappeared from the board, it is better not to use the neural networks for move
ordering, even if under some criteria the position is considered to be the middle
game.

The third position (Fig. 9) is a closed middle-game position (as opposed to
the open position of Fig. 6). Although the move made in the game is again
atypical, the neural network scores it relatively high again.
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