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Abstract

This paper introduces the APHID �Asynchronous Parallel Hierarchical Iterative Deepening� game�
tree search algorithm	 An APHID search is a hierarchical search with a master controlling the top of the
tree �d� ply�� and the slaves searching the rest of the tree �d � d� ply�	 The slaves asynchronously read
work lists from the master and return score information to the master	 The master uses the returned
score information to generate approximate minimax values� until all of the required score information is
available	

APHID has been programmed as an easy to implement� game�independent �� library	 This has been
demonstrated by parallelizing three programs �chess� checkers and Othello� on a network of workstations�
each with less than a day
s worth of e�ort	

� Introduction

The alpha�beta ���� minimax tree search algorithm has proven to be a di�cult algorithm to parallelize�
Although simulations predict excellent parallel performance� many of these results are based on an unrea�
sonable set of assumptions� In practice� knowing where to initiate parallel activity is di�cult since the result
of searching one node at a branch may obviate the parallel work of the other branches �a so�called cut�o���
In real�world implementations� such as for high�performance chess� checkers and Othello game�playing pro�
grams� the programs su�er from three major sources of parallel ine�ciency �a similar model is presented in
	
���

� Synchronization Overhead The search typically has many synchronization points that result in a high
percentage of processor idle time�

� Parallelization Overhead This is the overhead of incorporating the parallel algorithm� which includes
the handling of communication and maintaining structures to allow for allocation of work�

� Search Overhead Search trees are really directed graphs� Work performed on one processor may be
useful to the computations of another processor� If this information is not available� unnecessary search
may be done�

These overheads are not independent of each other� For example� increased communication can help reduce
the search overhead� Reducing the number of synchronization points can increase the search overhead� In
practice� the right balance between these sources of program ine�ciency is di�cult to �nd� and one usually
performs many experiments to �nd the right trade�o�s to maximize performance�

Many parallel �� algorithms have appeared in the literature �see 	
� for a comprehensive list of algo�
rithms�� The PV�Split algorithm recognized that some nodes exist in the search tree where� having searched
the �rst branch sequentially� the remaining branches can be searched in parallel 	
��� Initiating parallelism

�A part of this paper was presented at the Advances in Computer Chess VIII conference in Maastricht� June ���� ���	 A
di
erent portion was accepted for publication at the �th IEEE Symposium on Parallel and Distributed Processing �SPDP ����
New Orleans� October ���� ���	






along the best line of play� the principal variation� was e�ective for a small number of processors� although
variations on this scheme seem to be limited to speedups of less than � 	����

The idea can be generalized to other nodes in the tree� At nodes where the �rst branch has been searched
and no cut�o� occurs� the rest can likely be searched in parallel� It is a trade�o� � increased parallelism
versus additional search overhead� since one of these parallel tasks could cause a cut�o�� This idea has been
tried by a number of researchers 	�� �� 
��� The best�known instance of this type of algorithm is called Young
Brothers Wait �YBW� and was implemented by Feldmann in the Zugzwang chess program 	��� Feldmann
achieved a ����fold speedup using YBW on 
��� processors� Variations of this algorithm have appeared with
comparable experimental results� such as Kuszmaul�s Jamboree search 	
�� and Weill�s ABDADA algorithm
	����

This class of algorithms cannot achieve a linear speedup primarily due to synchronization overhead�
the search tree may have thousands of synchronization points and there are numerous occasions where the
processes are starved for work� The algorithms have low search overhead� but this is primarily due to the
implementation of a globally shared transposition table to share information and improve move ordering�

This paper introduces the Asynchronous Parallel Hierarchical Iterative Deepening �APHID�� game�tree
search algorithm� The algorithm represents a departure from the approaches used in practice� In contrast
to other schemes� APHID de�nes a frontier �a �xed number of moves away from the root of the search tree��
and all nodes at the frontier are done in parallel� Each worker process is assigned an equal number of frontier
nodes to search� The workers continually search these nodes deeper and deeper� never having to synchronize
with a controlling master process� The master process repeatedly searches to the frontier to get the latest
search results� In this way� there is e�ectively no idle time� search ine�ciencies are primarily due to search
overhead� APHID�s performance does not rely on the implementation of a global shared memory� which
makes the algorithm suitable for loosely�coupled architectures �such as a network of workstations�� as well
as tightly�coupled architectures�

Unlike most parallel �� algorithms� APHID is designed to �t into a sequential �� structure� APHID has
been implemented as a game�independent library of routines� These� combined with application�dependent
routines that the user supplies� allow a sequential �� program to be easily converted to a parallel �� program�
Although most parallel �� programs take months to develop� the game�independent library allows users to
integrate parallelism into their application with only a few hours of work�

This paper discusses the APHID algorithm� its application�independent interface and the performance
of the APHID algorithm� The paper is organized into �ve sections� Section � is a brief summary of previous
work in sequential and parallel game�tree search� Section � is primarily concerned with the details of how
the APHID algorithm operates� and how the library integrates with an existing sequential �� algorithm�
Section � describes the results of integrating the library into three di�erent game�playing programs Keyano
�Othello�� TheTurk �chess�� and Chinook �checkers�� Section � describes some conclusions that can be
drawn from the experiments� and a glimpse at some of the things we intend on improving before APHID�s
general release�

� Previous Work

This section is divided into two subsections� discussing sequential and parallel search methods�


�	 Sequential Game�Tree Search

Most common games of thought �such as checkers� chess� Othello and Go� �t into the class of two�player�
zero�sum games with perfect information� Given su�cient time and assuming that both players want to win
the game� it is easy to determine a best move in any position� and determine whether or not any position is
a win� loss or draw�

An initial position in a game� and all of its possible outcomes� can be represented as a game�tree� Each
node in the game�tree represents a position within the game� Each arc joining a node at level l to a node
at level l� 
 represents the move required to reach the successor position� The various levels in the tree are
called plies by game�tree researchers� where ply � is the current position in the game� ply 
 consists of all

�An aphid is a soft�bodied insect that sucks the sap from plants	
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Figure 
 �a� Tic�Tac�Toe Game�Tree� �b� Game�Tree with Minimax Values

successors to the position at ply �� and so on� At the terminal positions in the game�tree� the game is over
and a value is used to represent the outcome of the game� For example� a win for the player to move would
be represented as 
� a loss as �
� and a draw as �� The left hand tree in Figure 
 shows a typical game�tree
for the game of Tic�Tac�Toe�

The game�tree representation allows us to de�ne a recursive depth��rst tree searching algorithm to
determine the minimax value of each node in the game�tree� The minimax value of a node represents
the expected outcome of that position� given best play by both sides� The minimax algorithm works by
searching the tree in a depth��rst manner� We take the minimum of all the values for successor positions at
odd�numbered plies in the tree� since this is where the opponent moves� Conversely� we take the maximum
of the values of successor positions at even�numbered plies within the game�tree� The right hand tree in
Figure 
 shows an example of how to derive the minimax values of each node in the game�tree�

A principal variation through a game�tree is a series of moves that yield optimal scores for both players�
For example� there is only one principal variation in the game tree given in Figure 
� shown in bold� In
general� once the tree is completely searched� an �optimal� move would be the �rst move from a principal
variation�

For games such as chess� some game�trees are so large� the determination of a minimax value for the root
is e�ectively intractable� Thus� a heuristic evaluation function is normally used to estimate the potential of
winning from a position at a �xed ply in the game�tree� These are the leaf nodes of the truncated search
tree� and this limit is called the horizon of the game�tree�

The alpha�beta ���� algorithm improves the minimax algorithm by preventing exploration of moves that
can provably be demonstrated not to a�ect the minimax value above the given node� The name is derived
from the two bounds � and �� which are lower and upper bounds on the minimax value we are interested
in� The pair of bounds is often referred to as the search window for a position� and the �� algorithm will
return the correct minimax value if the root is searched with the window � � �� and � � ���

An example of how the �� algorithm would prune a tree is given in Figure �� We know that the left
subtree has a minimax value of �� so we set � � � before we search the right subtree� Note that we set � at
even ply� and � at odd ply from the root� After looking at the �rst leaf of the right subtree� we know that
the minimax value of the right subtree will be less than 
� Since � � �� we do not search the other moves in
the right subtree�

If we search a tree of depth d which has w moves from any position� there are ��wd� nodes searched
with the minimax algorithm� However� if a �best� move is always searched �rst� �� can reduce this size to
��wd��� 	
��� The structure of the critical tree evaluated in the optimal case � is illustrated in in Figure ��
At ALL and PV �Principal Variation� nodes� all children are searched� while only one child of each CUT node
is searched� Note that in practice� you are never certain of the node�s type a priori�

If a position occurs twice within the tree� we can save the work of exploring the tree underneath the node
through the use of a large hash table which stores previously evaluated positions and scores� This hash table

�The critical tree is not necessarily the smallest tree that can be searched in practice� since transpositions are not taken into
account ����	
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is known as a transposition table�
Most competitive game�tree programs use iterative deepening to search the tree 	���� After a k�ply search�

a k� 
�ply search is executed on the same position� Although this seems wasteful� a transposition table and
other move ordering techniques can often provide a very accurate guess at what the best move is� and the
tree searched is close to the critical tree in size� Experience shows that the bene�ts gained by a k�ply tree
as a prelude to searching a k � 
�ply tree outweigh the costs 	����


�
 Parallel Game�Tree Search

The idea behind the PV�Split algorithm has proven to be a fundamental building block in developing high�
performance parallel game�tree algorithms 	
��� Simply stated� the �rst move at a principal variation node
must be completely evaluated before the subsequent moves can be handed out to other processors and
evaluated in parallel� Parallelism occurs only at the PV nodes� and the nature of the algorithm ensures that
an accurate search window is determined before allocating work to the slaves in parallel� which reduces search
overhead� Although it is easy to control the PV�Split algorithm since only one PV node can be evaluated in
parallel at a given moment in time� a di�erent approach is needed if you have more processors than moves
at the current PV node�

Newborn�s UIDPABS algorithm 	
�� was the �rst attempt to asynchronously start the next level of an
iteratively deepened search instead of synchronizing at the root of the game�tree� The moves from the root
position are partitioned among the processors� and the processors search their own subset of the moves with
iterative deepening� Each processor is given the same initial window� but some of the processors may have
changed their windows� based on the search results of their moves� The UIDPABS algorithm then combines
the results once a predetermined time limit has been reached� The APHID algorithm uses the basic concept
of how to implement asynchronous search from UIDPABS� as we shall see in Section ��

Hsu�s family of algorithms 	�� are similar in design to the APHID algorithm� A host processor is respon�
sible for maintaining a queue of critical tree and non�critical tree work to do for a d� ply search tree� The
special�purpose processors are responsible for the d � d� ply at the bottom of the tree� by continually re�
questing pieces of work from the two queues� As the work is completed and sent back to the main processor�
the tree is incrementally updated up from the leaf node� and new work is added to the non�critical tree list�
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as necessary� Hsu has not published results with the version of Deep Blue that played against Kasparov in
February 
���� The simulation results presented in his thesis predict a speedup of ��� on 
��� processors
although these results have not been borne out in practice 	���

Although APHID is similar to Hsu�s family of algorithms� there are important di�erences between the
two approaches� It is important to note that the d� ply critical tree is only generated once� and then
incrementally changed as results come in from the processors� Furthermore� although iterative deepening is
used to accomplish the d� d� ply search on the specialized processors� there is no concept of ownership of a
subtree by a processor in Hsu�s algorithm� Hsu�s original design did not include a concept of a multi�tiered
hierarchy of processors� Hsu�s work priority scheme is slightly di�erent than the one implemented in APHID�
Finally� Hsu�s algorithm gives no speculative work to the specialized processors in when the two work queues
are empty�

The Young Brothers Wait �YBW� algorithm extends PV�Split to state that the other moves �the �young
brothers�� can be searched in parallel only if the �rst move of a node has been completely searched and
has not caused the �� search to be pruned 	��� Assuming we start with an in�nite search window at the
root position� this is always true at PV nodes� and is generally true at ALL nodes� Thus� there are multiple
potential parallel nodes at any given time when searching the tree� However� the search is still synchronized
in the same way that PV�Split is synchronized� Until a search of all children of a given PV node is completed�
the other children of the PV node�s parent cannot be searched�

Although the synchronization overhead in YBW is a lot smaller than in PV�Split� workers still search
for a processor that has work to do �according to the YBW criterion� by sending a message to a processor
at random� This dynamic load�balancing method� �work�stealing� 	
��� is e�ective in balancing the share of
work done on each processor� but periodically imposes a heavy communication load�

In the implementation of Zugzwang presented in Feldmann�s thesis 	��� a distributed transposition table
was implemented with message passing across a series of Transputers to improve the results of the algorithm�
On a system where only a small number of nodes can be processed per average message latency ratio� this
type of distributed transposition table is practical and is useful in controlling the search overhead�

An alternative to a shared transposition table is the idea of recursive iterative deepening to achieve a
better move ordering 	
��� The additional search overhead of recursive iterative deepening in a work�stealing
algorithm with only local transposition tables is strongly dependent on the branching factor of the trees
being searched� Although he did not invent the idea �� Kuszmaul achieved reasonable success with recursive
iterative deepening in the StarTech chess program� both in the sequential program with a local transposition
table and the parallel program with a shared transposition table� This is partially due to the test set being
used Kaufman�s test set of tactical positions 	

� 
�� yields positions which have rapidly changing principal
variations� and is more susceptible to showing the advantages of recursive iterative deepening� It remains
to be shown whether recursive iterative deepening or a shared transposition table by themselves is a more
e�ective heuristic in speeding up a work�stealing algorithm on a �fair� test set�

David�s ��� framework uses a global transposition table to control where the processors should be
searching 	��� By adding a �eld to the global transposition table to indicate the number of processors
searching that node� each processor can pretend it is searching the tree sequentially� and make decisions on
where to search based on the number of processors searching the children of the node� When any processor
generates a value for the root position� the search is �nished� Unfortunately� David�s method of controlling
where the processors should be searching was ine�cient� and the scheme was hampered by the use of half of
the Transputers as transposition table storage units� limiting the speedup reported to ��� on 
� Transputers�
Regrettably� no work is reported that addresses these shortcomings�

Weill 	��� recognized that the YBW criterion could be used in conjunction with the ��� framework�
Weill showed the combination� ABDADA� yields comparable performance to a YBW implementation on a
CM��� On 
� processors� ABDADA yielded an 
��fold speedup for a chess program� while YBW generated
a speedup of just under ��

Unfortunately� neither of these scheduling methods deal adequately with architectures that have can
process a high number of nodes per average message latency� such as a network of workstations� Using
YBW on a system with only transposition tables local to each process will yield large search overheads� since
there is no guarantee of where a given node will end up when we use the chaotic work�stealing scheduler

�Kuszmaul states that both Truscott and Berliner have used recursive iterative deepening in the past	

�



APHID

d

d’

YBW

Figure � Location of Parallelism in Typical APHID and YBW Search

in combination with iterative deepening� Using ABDADA is infeasible since the system requires a shared
transposition table� which would be extremely slow on a parallel architecture with a high number of CPU
cycles per average message latency�

� The APHID Algorithm

Young Brothers Wait and other parallel search algorithms su�er from three serious problems� First� the
numerous synchronization points result in idle time� This suggests that a new algorithm must strive to
reduce or eliminate synchronization altogether� Second� the chaotic nature of a work�stealing scheduler
requires algorithms such as YBW and Jamboree to use a shared transposition table and�or recursive iterative
deepening to achieve a good move ordering and reasonable performance� Algorithms based on the ���
framework cannot work without a shared transposition table� Third� the program may initiate parallelism
at nodes which are better done sequentially� For example� having searched the �rst branch at a node and
not achieved a cut�o�� Young Brothers Wait �in its simplest form� permits all of the remaining branches to
be searched in parallel� However� if the second branch causes a cut�o�� then all the parallel work done on
the third �and subsequent� branches has been wasted� This suggests parallelism should only be initiated at
nodes where there is a very high probability that all branches must be considered�

This section introduces the Asynchronous Parallel Hierarchical Iterative Deepening �APHID� game�tree
searching algorithm� APHID has been designed to address the above three issues� The algorithm is asyn�
chronous in nature� it removes all synchronization points from the �� search and from iterative deepening�
Also� parallelism is only applied at nodes that have a high probability of needing parallelism� The top plies
of a game�tree �near the root� vary infrequently between steps of iterative deepening 	���� This relative
invariance of the top portion of the game�tree is exploited by the APHID algorithm�

In its simplest form� APHID can be viewed as a master�slave program although� as discussed later� it can
be generalized to a hierarchical processor tree� For a depth d search� the master is responsible for the top
d� ply of the tree� and the remaining d� d� ply are searched in parallel by the slaves� Figure � shows where
parallel activities occur in APHID and YBW� Each location marked with an x shows where the parallelism
typically takes place� Although more parallelism could be generated in YBW� each x represents a potentially
costly synchronization point� The parallelism is more constrained in APHID and� hence� is more likely to
su�er from load imbalances than other dynamic scheduling routines �such as YBW� Jamboree� or �����

��	 Operation of the Master in APHID

The master is responsible for searching the top d� ply of the tree� It repeatedly traverses this tree until the
correct minimax value has been determined� The master is executing a normal �� search� with the exception
that APHID enforces an arti�cial search horizon at d� ply from the root�

Each leaf node in the master�s d� ply game�tree is being asynchronously searched by the slaves� Before
describing how the master knows when the d ply search is complete� we must �rst describe how the master

�



searches the d� ply tree�
When the master reaches a leaf of the d� ply tree� it uses a reliable or approximate value for the leaf�

depending on the information available� If a d � d� ply search result is available from the slave� that will
be used� �In the current implementation� we do not use deeper ply values� even if they are available� This
will be discussed in Section ��� However� if the d� d� ply result is not available� then the algorithm uses the
�best available� ply result that had been returned by the slave to generate a guessed minimax value�� Any
node where we are forced to guess is marked as uncertain�

As values get backed up the tree� the master maintains a count of how many uncertain nodes have been
visited in a pass of the tree� As long as the score at any of the leaves is uncertain� the master must do another
pass of the tree� Once the master has a reliable value for all the leaves in its d� ply tree� the search of the d
ply tree is complete� The controlling program would then proceed to the next iteration by incrementing d
and asking the master to search the tree again�

Note that this de�nition of the master solves one of the problems that some algorithms have with respect
to initializing parallelism too quickly at a potential CUT node� By using the guessed scores when accurate
information is not available� the APHID algorithm automatically determines if a subsequent child is likely to
generate a cut�o� at a failed CUT node� If it seems likely that a child will generate a cut�o� based on guessed
values� the children of the failed CUT node are evaluated sequentially� If it seems unlikely that the node will be
pruned due to low minimax values� the search would continue for a promising node at that branch in parallel�
This is all handled automatically by the �� routine� The handling of a hypothesized CUT node is stronger
than the equivalent scenario in the YBW algorithm� which ignores previous score information available for
some branches of the failed CUT node� In the full version of YBW� application�dependent information is used
to do what APHID handles automatically with the �� search window�

The slaves are responsible for setting their own search windows� based on information from the master�
Sometimes� the information returned by the slave may not be useful to the master� For example� a slave can
tell the master that the score of a given node is less than ��� but the master may want to know if the score
is in between �� and �� In this case� a �bad bound� search is generated� and the search window parameters�
� and �� must be communicated to the slave processor� Any nodes where we are waiting for �bad bound�
information to be updated by the slave are considered as uncertain by the master� Eventually� the slave
will return updated information that is consistent with both the original information and the search window
requested� �

��
 The APHID Table

If a leaf node is visited by the master for the �rst time� it is statically allocated to a slave processor� This
information is recorded in a table� the APHID table� that is shared by all processors� Figure � shows an
example of how the APHID table would be organized at a given point in time�

The APHID table is partitioned into two parts one which only the master can write to� and one which
only the slave that has been assigned that piece of work can write to� Any attempt to write into the table
generates a message that informs the slave or the master process of the update to the information� The
master and slave only read their local copies of the information� there are no explicit messages sent between
the master and the slave asking for information�

The master�s half of the table is illustrated above the dotted line in Figure �� For each leaf that has been
visited by the master� there is an entry in the APHID table� Information maintained on the leaves includes
the moves required to generate the leaf positions from the root R� the approximate location of the leaf in the
tree �which is used by the slave to prioritize work�� whether this leaf was visited on the last pass that the
master executed� and the number of the slave that the leaf was allocated to�

In our example� we can see that the same number of leaves have been allocated to each slave� Note that
there is an additional leaf� �� that is not represented in the master�s d� ply search tree� This leaf node has
been visited on a previous pass of the d� ply search tree� and was not visited on the latest pass� However�

�Many game�tree search programs exhibit an e
ect based on the parity of the search depth �odd or even number of ply�	
Scores are stable when you look at results from the odd plies only� or even plies only� but are sometimes unstable when you mix
the two	 Thus� we use the deepest ply value with the same parity� instead of always using the deepest ply value available	

�It may happen that the original search and the �bad bound� search are inconsistent with one another� through the use
of search extensions that may or may not be triggered based on the search window used	 In this case� the search explicitly
requested by the master overrides the information that had been previously stored	
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Figure � A Snapshot of APHID Search in Operation

the information that the slave has generated may be needed in a later pass of the tree and is not deleted by
the master� Leaves are initially allocated to the slaves in a round�robin manner� and may move due to load
balancing �as described in Section ����� Although there may be better methods of allocating leaves� it has
been found that this is a reasonable method of initially balancing the load on a small number of processors�

The slave�s part of the table� illustrated by the area below the dotted line� contains information on the
result of searching the position to various depths of search� The �best� information and the ply to which the
leaf was examined is given underneath each leaf node in the tree� For leaf 
� the score returned is �
 with
a search depth of �� Leaf � illustrates that the score information returned by the slave is not necessarily an
exact number� The slaves maintain an upper bound and a lower bound on the score for each ply of search
depth� The score is known to be exact when the upper and lower bounds are the same�

��� Operation of Slave in APHID

A slave process essentially executes the same code that a sequential �� searcher would� The process simply
repeats the following three steps until the master tells it that the search is complete


� Look in its portion of its local copy of the APHID table� and �nd the highest priority node to search�

�� Execute the search�

�� Report the result back to the master �getting an update to its APHID table in return��

The work selection criterion is primarily based on the depth to which the slave has already searched
a node� As we can see for Slave 
 in Figure �� leaves 
� � and � have been searched to �� � and � ply�
respectively� Thus� Slave 
 is attempting to search leaf � to 
 ply� and will continue to search leaf � up to �
ply by using iterative deepening� if no new work arrives from the master�

The secondary criterion is the location of the node within the master�s game�tree� This secondary criterion
is necessary since it is usually bene�cial to generate the results in a left�to�right order for the master� Children
of nodes are usually considered in a best�to�worst ordering� implying that the left�most branches at a node
have a higher probability of being useful than the right�most ones� For Slave � in Figure �� leaves � and �
have both been searched to � ply� but leaf � is being searched in the slave to � ply since it is further left in
the tree than leaf ��

A node that has a priority of zero �because it is no longer part of the master�s tree� will not be selected
for further search� For Slave �� we notice that Leaf � would be searched if it had been visited by the master
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on the latest pass� Leaf � is ignored by the scheduling algorithm because it is not currently part of the
master�s tree�

Before a search can be executed� an �� search window must be generated by the slave� The master
continually advises the slaves of the leaf�s location within the master�s tree� and the hypothetical value
of the root of the master�s tree� Although the width of the search window is application�dependent� one
normally wants to center the window around this hypothesized root value� plus or minus a factor to re ect
the uncertainty in it�

There are three types of update messages that a slave receives from the master a new piece of work
has been added to the slave processor�s APHID table� the location of a leaf node within the master�s tree
has changed �changing the secondary work scheduling criterion�� and a noti�cation of a �bad bound� on a
node� The bad bound message alerts the slave that a position�s search information is not su�cient to save
the node from being uncertain� In this case� the slave must re�search the node with the �� search window
sent by the master to the ply requested�

As a performance improvement� we want to force the slave to always work on nodes for the current
search depth of the master� When all the slave�s work has been searched to the required depth� rather than
becoming idle� it starts re�searching its work speculatively an additional ply deeper� in anticipation of the
next iteration �depth d� 
�� When speculative search is running on a processor� the slave routinely checks
the communication channel for messages from the master� If the slave receives a new piece of work to do
at d � d� ply or less� the speculative search is immediately aborted and control is returned to the slave�s
scheduling algorithm�

�� Load Balancing

Although the master attempts to give an equal amount of work to each slave in APHID� neither the master
nor the slave can predict the amount of e�ort required to complete a d� d� ply search for a given piece of
work� In games such as chess� there are no completely reliable indicators of the �e�ort� required for a given
search� Thus� load imbalances can occur based on the allocation of work to slaves�

The master knows all of the information about how many uncertain nodes it is waiting for from each
slave� Thus� the master has information on when to move leaves from the d� ply tree from an overworked

slave �a slave with a large number of uncertain nodes� to an underworked slave �a slave with no uncertain
nodes�� This yields a tradeo� between faster convergence for a given ply search of the tree and additional
search overhead�

��� Implementation

The APHID algorithm has been written as an application�independent library of C routines� The library
was written to provide minimal intervention into a working version of sequential �� �or its common variants
NegaScout	��� ��� and Principal Variation Search �PVS� 	
���� Since the library is application�independent�
a potential user must write a few application�dependent routines �such as move format� how to make�unmake
moves� position format� setting a window for a slave�s search� etc��� APHID�s message passing was written
using PVM 	��� to allow for the maximum portability among available hardware�

To parallelize a sequential �� program� the user modi�es his or her search routine as shown in Figure ��
The APHID changes are marked by shading� and easily �t into standard �� frameworks� This one piece of
code functions as the search algorithm for both the master and the slave processes�

There are a few additional calls that have to be added to the iterative deepening routine that calls ���
outlined in Figure ��

Initially� it was anticipated that all users would want to search in parallel from the root of the game tree�
However� there are some programs that wish to handle the root of the game tree in a di�erent way than the
other leaves of the search tree �by adding calls to the time�control mechanism� and special handling of the
�� search window�� APHID has been generalized to integrate with this style of searching the game tree�
Figure � illustrates the changes necessary� The only signi�cant change from Figure � is the addition of a call
to aphid intnode premove�

There are two calls that are inserted into the main program� which are illustrated in Figure ��
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int PVS(p, alpha, beta, depth, plytogo)
position p;
int alpha, beta;
int depth, plytogo;
{

int h_length;  /* ply position previously searched to */

char *p_hash;  /* pointer to hash value        */
char *p_key;   /* pointer to hash table "lock" */

int h_score;   /* score for h_length ply              */
int h_flag;    /* VALID, LBOUND or UBOUND             */
move *h_move;  /* recommended move for h_length ply   */
int width;     /* number of moves in move list */
int i;         /* move counter                 */
int value;     /* score of child PVS call      */

/* Generate hash value and key for this position */
generate_hash(p, p_hash, p_key);
/* Fetch information from local transposition table */
retrieve(p_hash, p_kley, h_length, h_score, h_flag, h_move);

/* If we have searched position deep enough, use score info */

if (flag == VALID)  { return(h_score); }

if (alpha >= beta) { return(h_score); }
}

/* Evaluate position if at bottom of the tree */

}

/* Generate move list, evaluate position if no moves */

if (width == 0) { return(evaluate(p)); }

}

if (flag == UBOUND) { beta = min(beta,h_score); }
if (flag == LBOUND) { alpha = max(alpha,h_score); }

score = −INFINITY;
lower = alpha;  upper = beta;

/* Loop through moves in move list */
for(i=1; (i <= width && score <= beta); i++ ) {

make_move(p, move[i]);

value = −PVS(p, −upper, −lower, depth+1, plytogo−1);
if (value > score && i > 1) {

value = −PVS(p, −beta, −value, depth+1, plytogo−1);
}

unmake_move(p,move[i]);

if (value > score) {
score = value;
move_opt = move[i];

}

/* Set bounds for next search */
lower = max(alpha, score);  upper = lower+1;

} /* for all moves */

/* Write information into local trans. table */

h_flag = VALID;

width = generate(p, h_move);

if (score <= alpha) { h_flag = UBOUND; }
if (score >= beta)  { h_flag = LBOUND; }
if (h_length <= plytogo) {

store(p_hash, p_key, plytogo, score, h_flag, move_opt);
}
return(score);

} /* function PVS */

if (plytogo <= 0) { return(evaluate(p)); }

if (aphid_master() == FALSE && h_length == plytogo) {

if (aphid_horizon(depth)) {

if (aphid_checkalarm() != FALSE) {

aphid_intnode_start(depth, p_hash, p_key);

aphid_intnode_move(depth, &(move[i]));

aphid_intnode_update(depth, value);

if (score >= beta) { aphid_intnode_fixbound(depth); }

aphid_intnode_end(depth, &score);

terminate_search = TRUE;

return(aphid_eval_leaf(alpha,beta,depth,p_hash,p_key));

return(0);  /* Should exit PVS quickly when alarm on */

Figure � How APHID Modi�es a Typical PVS Implementation

for(plytogo=1;(plytogo <= MAXDEPTH && done == FALSE); plytogo++) {
/* Set up search */

aphid_initsearch(MAXDEPTH);

/* Print out results of search */
}

/* Call to aphid_rootsearch replaces call to PVS */
score = aphid_rootsearch(0,plytogo,guess−eps,guess+eps);

aphid_endsearch();

/* Search at root around value (guess) with small error (eps) */

Figure � How APHID Modi�es the Iterative Deepening Routine
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for(plytogo=1;(plytogo <= MAXDEPTH && done == FALSE); plytogo++) {

}
/* Print out results of search */
score = ROOT_PVS(root_pos,guess−eps,guess+eps,0,plytogo);

ROOT_PVS(root_pos, alpha, beta, depth, plytogo)
...
{

...
/* Search PV Move */
lower = alpha;

search_best_move:

make_move(p,bestmove);

unmake_move(p,bestmove);

aphid_initsearch(MAXDEPTH);

aphid_endsearch();

aphid_intnode_premove(depth, &bestmove);

/* aphid_rootsearch replaces typical call to PVS */

/* Set up search with small window (eps) around guess */

oldscore = −aphid_rootsearch(depth+1,plytogo−1,−beta,−lower);

make_move(p,move[i]);
/* Check if move beats PV move by more than delta */

}

bestmove = move[i];
lower = newscore;

}
...

} /* function ROOT_PVS */

aphid_intnode_premove(depth,&move[i]);

unmake_move(p,move[i]);
−oldscore−delta−1, −oldscore−delta);

newscore = −aphid_rootsearch(depth+1, plytogo−1,

if (newscore < beta) { goto search_best_move; }

/* set new best move and score and research (if necc.) */

for(i=2;(i<=width && newscore <= oldscore+delta; i++) {
newscore = oldscore;

if (newscore > oldscore+delta) {

/* Search other moves at root, and only switch if move beats */
/* PV score (oldscore) by a small margin (delta)             */

Figure � How APHID Modi�es Special Handling of the Root of the Game Tree

int main(argc, argv)
int argc;
char *argv[];
{

/* Initialization required by any process in system */

/* Initialization required only by the master process */

exit(0);
}

/* Play game */

/* Only the absolute master process gets here */
aphid_startup(argv);

aphid_exit();

Figure � How APHID Modi�es the Main Program







A brief explanation of the parameters and function of each of these aphid routines can be found in
Appendix A�

Along with the additional calls added to PVS� the iterative deepening routine� and the main program�
roughly 
�� lines of application�dependent code have to be de�ned for the aphid stub routines� The APHID
library is game�independent� but it needs to know some game�dependent properties such as what the name
of the evaluation function is� what the name of the search routine is� how to make and unmake moves� etc�
The aphid stub routines are also brie y described in Appendix A�

� Experiments

The APHID game�independent library has been inserted into three di�erent programs over the last six
months� For this initial experiment� each of the programs chosen were written at the University of Alberta�
and the authors of the program were assisted in implementing the APHID library into their programs� The
�rst program was Keyano� an Othello program written by Mark Brockington� The second program was
TheTurk� a chess program written by Yngvi Bjornsson and Andreas Junghanns� The �nal program was
the current Man�Machine world champion checkers program� Chinook� written by a team that includes
Martin Bryant� Rob Lake� Paul Lu� Jonathan Schae�er� and Norman Treloar 	����

Parallel tests were run on up to 
� workstations on a network of SparcStation IPC computers with 
�
MB of RAM� running the SunOS ��
�� operating system� The SparcStations are linked with 
 segment of

� base � �thin net� Ethernet� One workstation in each experiment was completely occupied by the master
process� while the other workstations each ran a single slave process�

More speci�c details will follow in the subsequent sections about the experiments with each program�
However� we must discuss the general methodology used for evaluating the performance of the APHID
algorithm�

Parallel and sequential algorithms often do not agree with each other about minimax values and best
moves when the full version of the program is used 	
��� For example� di�erent search windows cause di�erent
search extensions to be turned on� causing di�erent alpha�beta results� Thus� all search extensions� search
reductions and null move searching were turned o� for the purposes of this experiment� Since some work
could be evaluated to d� 
�ply before the d�ply result is �nished� we also forced the transposition table to
report only transposition table scores that had been searched to the exact depth �as in Figure ��� Although
a �xed depth is enforced on the programs� quiescence search was left in TheTurk and Chinook to prevent
the evaluations from being signi�cantly unstable� This forced the parallel and sequential programs to return
identical minimax values� allowing for a fair comparison�

A suitable benchmark set was chosen for each program �see appropriate section�� Each game also has
di�erent time constraints in typical positions� For example� an Othello program should take an average of
�� seconds to make a move for a midgame search� and a chess program should take about 
�� seconds to
complete a search� The search depth was chosen so that the average of the parallel results on 
� processors
did not exceed this time constraint�

The speedup given in this section compares the �xed depth version of the sequential program versus the
time required to �nd the result in parallel

speedup �
sequential time

parallel time
�

It is important to note that neither the sequential nor the parallel algorithm being tested is the one that
would be used under tournament conditions� because the search extension�reduction algorithms were turned
o�� For the purposes of the experiment� the parallel and sequential times for each search are summed together
to determine the aggregate speedup�

The aggregate speedups will be illustrated in two graphs� The �rst graph will show the breakdown of the
aggregate speedup at the point where the depth d search has been completed� The second graph divides the
test set into three or four disjoint subsets �based on size of the sequential search�� and gives the aggregate
speedup for each subset� For every program tested� both graphs illustrate that larger searches yield greater
parallelism than smaller searches� The second graph also illustrates some of the variance to be found in the
aggregate speedup�
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The overheads in the algorithm will be illustrated in a third graph� The third graph represents the same
scale across all programs� For Keyano and TheTurk� a fourth graph is given to illustrate the same data
on a magni�ed scale�

The total overhead represents the additional computing time required by the parallel algorithm to achieve
the same result

total overhead �
�parallel time � n�� sequential time

sequential time

where n is the number of processors� The total overhead can also be computed by examining the overheads�
The three main overheads are using a processor exclusively as a master� the e�ective decrease in nodes
per second examined� and the additional number of nodes searched by the parallel algorithm� There is no
synchronization overhead in the APHID algorithm� since the algorithm operates in an asynchronous manner�
This can be expressed in the following formula� for total overhead

total overhead � �
 � master overhead�� �
 � parallelization overhead�

� �
 � search overhead � speculative search��

The master overhead is the approximate penalty incurred by having a single processor being allocated
completely to the handling of the master� This is simply 
��n � 
�� the bene�t of adding another slave to
the other n� 
 slaves�

The parallelization overhead is the penalty incurred by the APHID�library on the speed of the slaves�
The di�erence between the rate at which the parallel slaves explore nodes and the sequential program�s node
rate is assumed to be the parallelization overhead� This parallelization overhead is derived partially from
the overhead of using PVM� and partially from the work�scheduling algorithm on each slave� In e�ect this
includes synchronization overhead� complexity overhead and communication overhead� as used in previous
parallel �� models 	
�� 
�� ����

The search overhead represents the additional nodes searched to achieve the d ply minimax value� This
can be computed by dividing the nodes searched to generate d ply search results in the parallel program
by the nodes searched by the sequential program� Most of the search overhead is incurred by attempting
to do searches before the correct search window is available� Thus� the slaves use �� search windows that
are larger than those in the sequential program� Most of the increase in search overhead as we increase
the number of processors can be attributed to information de�ciency� since there is no common shared data
between the processes �such as a shared transposition table��

Since we only search each position to d ply� the asynchronous nature of the slaves will result in some work
being done at d�
 ply �or more�� The speculative search represents the amount of additional search beyond
what the sequential algorithm would have done� The speculative search can be computed by taking the
number of speculative nodes searched and dividing that by the number of nodes searched in the sequential
case� In our experiments� the speculative search results were not used so that the parallel program produces
the identical results as the sequential version� verifying APHID�s correctness� In a real tournament game�
this speculative search could be used to look an extra move ahead on some key variations� since it is highly
likely that the moves extended a ply ahead would be in the left�most branches of the tree� Note that other
algorithms� such as Young Brothers Wait� have processors go idle when there is no work left to do on the
current iteration�

�	 Keyano �February 	����

The �rst program that the APHID library was implemented in was Keyano� an Othello program which has
competed in international Othello tournaments for the last three years�

APHID did not have load balancing at the time the algorithm was originally benchmarked� the load
balancing was introduced to the evolving APHID library in March� To be consistent with results presented
elsewhere 	��� the February 
��� results are given here�

To test the algorithm� Keyano was programmed to search with its midgame search algorithm to a depth
of d � 
� ply� with the master controlling the top d� � � ply of the tree�

�This formula is not the same as the formula presented in earlier versions of this paper	
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Figure 
� Keyano � Speedups by Depth of Search and Sequential Tree Size
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 Keyano � Overheads and Magni�ed View of Overheads

The �� positions examined were the positions from move � to move �� in the two games of the 
���
World Championship �nal between David Shaman and Emmanuel Caspard ��

In Figure 
�� we see the graph on the left contains the speedups broken down by ply� The graph on the
right contains the 
� ply results broken down into four quartiles� The �rst quartile represents the smallest
sequential searches� while the fourth quartile represents the largest sequential searches�

In Figure 

� we see the relative size of each of the overheads described earlier� The results for Keyano
are� in many ways� the most encouraging of the three programs tested�

There is a low search overhead which increases slightly as we go from � to 
� processors� The paral�
lelization overhead is not large� Keyano went from investigating ���� nodes per second in the sequential
program to investigating between ���� to ���� nodes per second in the APHID version of the program� The
only overhead that increases rapidly is the speculative search overhead� but this is not a concern during a
tournament game �as previously stated��

Weill tested YBW and ABDADA on a CM�� using a di�erent Othello program 	���� YBW achieved a
����fold speedup and ABDADA achieved a 

�fold speedup on 
� processors� Although the APHID results
are not as good� they were achieved without a shared transposition table� Both ABDADA and YBW will get
poor performance on a network of workstations� since the shared transposition table is critical to e�ective
move�ordering and limiting the search overhead�

�Beyond move ��� Keyano would attempt endgame searches before completing a ���ply sequential search	 Move � in an
Othello game is completely symmetric� and Keyano does not search for the �rst move in the game	
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Figure 
� TheTurk � Speedups by Depth of Search and Sequential Tree Size
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Figure 
� TheTurk � Overheads and Magni�ed View of Overheads

�
 TheTurk �April 	����

The experiments with TheTurk� the chess program by Andreas Junghanns and Yngvi Bjornsson� were run
soon after the load balancing was inserted into the APHID library� Although it was unclear whether load
balancing would be necessary with the APHID library when testing the program with Keyano� the necessity
for load balancing in other games such as chess was clear to the authors�

To test the program� the �� Bratko�Kopec positions were used� Although there are known problems with
these positions� using this test set allows for comparison with other work� Each position was searched to
depth d � �� while the master controlled the top d� � � ply of the tree� since d� � � was not feasible given
the amount of memory on the SparcStations� Figure 
� represents the speedups generated by TheTurk�
while Figure 
� gives the overheads in the parallel program�

Although the results presented here for chess are promising� we believe that better results can be achieved�
The main di�erence between the results for Keyano and TheTurk revolve around the size of the search
overhead�

We have come up with three possible hypotheses for this di�erence� The �rst is that Keyano does not
use quiescent search� As a consequence� the sizes of the various pieces of work are more predictable in size�
and Keyano�s results did not need load balancing� Load balancing causes search overhead since it forces a
new processor to repeat searches done by a di�erent processor� The load balancing is partially responsible for
the di�erence in search overhead� The second possible reason is that the search windows in the slaves can� in
some cases� be larger than the minimal window used in the sequential program� Although this larger window
is common to both parallel implementations� it has a much larger e�ect on the size of the trees searched in
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Figure 
� Chinook � Speedups by Depth of Search and Sequential Tree Size
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Figure 
� Chinook � Overheads

TheTurk than in Keyano� The third hypothesis is that the game of chess has more transpositions than
the game of Othello� Thus� the information de�ciency caused by doing the search on multiple processors is
greater in chess than in Othello�

Other results for parallel search algorithms on a network of workstations have been presented for the game
of chess 	���� A distributed transposition table was used to improve the performance of the ParaPhoenix
chess searches� and a speedup of � was achieved on 
� processors� Although these results are marginallybetter
than the results presented here� the scalability of the algorithm was extrapolated to a speedup of at most �
on �� processors� Based on the graphs presented earlier in this section� we believe the APHID algorithm will
outperform on a larger number of processors� The bene�cial e�ects of the distributed transposition table
are derived primarily in the top plies of the search tree� and these bene�ts are duplicated in APHID by
maintaining the top d� ply exclusively on the master processor�

�� Chinook �June 	����

Due to resource limitations� we could not run the experiments with Chinook until late June� The benchmark
positions used are a series of positions which Chinook has misevaluated in previous tournament games� Each
of these positions was searched to d � 
� ply� while the master controlled the top d� � � ply of the tree�

Figures 
� and 
� show the speedups and overheads for parallelism in Chinook�
This overhead model heavily relies on the fact that the average node cost is constant over the entire test

set� For Keyano and TheTurk� this is generally true� the number of nodes per second visited varies by no
more than �!� However� this is not true for Chinook� The number of nodes per second visited varies by at
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least ��!� due to numerous time�saving tricks in the code� Thus� the analysis of the overheads for Chinook
is not as reliable as it is for the other programs given in this technical report�

In any case� there are obvious problems with the parallelization in Chinook� Unlike the previous two
programs� we see that the APHID algorithm in Chinook incurs a lot of additional speculative search� and
a rapidly increasing search overhead� The number of pieces of work at depth d� � � was insu�cient to keep
a large number of slaves busy� However� when testing d� � � ply� we discovered that serious in exibilities
were encountered� preventing us from running a full test set without removing the transposition table in
Chinook� As well� the impact of transpositions in the game of checkers is much more important than in
either chess or Othello� This causes the search overhead to increase at a much faster rate for Chinook than
either of the previous test programs�

Although the speedups are very low in magnitude� parallelizing a high�performance checkers programs is
a very di�cult task� Paul Lu spent over a year working on the tournament version of parallel Chinook and
achieved speedups of ���� using a shared�memory system with 
� processors 	
��� The very thin game trees
of checkers do not yield easily to parallelism based on the critical tree� The authors believe that when the
APHID library is modi�ed to address these problems� the APHID library should yield a better speedup for
Chinook�

� Conclusions and Future Work

The APHID algorithm yields good speedups on a network of workstations without the necessity of a shared
transposition table� Although the authors are pleased with these preliminary results� a lot of work is left to
be done�

As mentioned in Section ���� the secondary interface and underlying code within the APHID library must
be �xed to allow for greater parallelism�

Our current implementation of APHID uses a �xed�depth horizon for the master�s tree� As mentioned in
our discussion of load balancing� all positions are not equal in the amount of search e�ort they require for a
�xed depth of search� APHID will be generalized to support a more dynamic search horizon in the master�

Instead of basing the results of the algorithm on the speedup� we are also interested in the quality of the
results returned by the algorithm� This will be necessary when the algorithm is tested beyond the �xed�depth
limitations given here� The bene�ts and disadvantages of these alternative views of parallel performance are
currently being explored�

The results reported here are based on a simple master�slave relationship� As the number of processors
increases� the master increasingly becomes a bottleneck� APHID has been generalized to work in a hierarchi�
cal process tree� although this aspect of the algorithm has not been tested here� Mid�level processes would
behave as a slave toward their master� and as a master toward their slaves� The scalability of the algorithm
has yet to be demonstrated on architectures of more than 
� processors� due to resource limitations during
the academic year�

Perhaps the biggest contribution of APHID is that it easily �ts in to an existing sequential �� program�
Although the �rst stage of the experiment uses programs written at the University of Alberta� the authors
believe that the same ease of integration will be demonstrated in the second stage of the experiment� when
the APHID library is given to beta�testers outside of the University of Alberta�
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A Description of APHID Interface

A�	 Types of Processes within APHID

� absolute master The single process which invokes all other processes within the APHID process
hierarchy� which occupies the highest level in the process hierarchy�

� slave Any process that must report its search results to a process above it in the hierarchy� With
this de�nition� a process is either the absolute master or a slave� and cannot be both�

� master Any process that has processes underneath it in the hierarchy� Note that it is possible for a
process to be both a master and a slave if the process hierarchy has multiple levels�

A�
 Constants To Be De�ned

Since the library is application�independent� some de�nitions of how things are implemented must be given
to the APHID library�

� APHID HASHTYPESIZE The size �in bytes� of the hash value used in your program�

� APHID HASHKEYSIZE The size �in bytes� of the �lock� used to guarantee that two positions sharing the
same hash value are the same�

� APHID MOVESIZE The size �in bytes� of the representation of a move in the application�

� APHID MINUSINF and APHID PLUSINF Speci�cations of values smaller than the minimum� and larger
than the maximum� that the �evaluation� could possibly return� respectively�

� APHID INVALIDSCORE A value that is outside the range represented by the minimum and maximum
values speci�ed previously�

� APHID LOG� TABSIZE The size of the APHID table that you intend on using to share between the
master and the slaves� taken to a base � logarithm� For example� a value of 
� indicates an APHID
table with ��� � 
���� entries�

� APHID MAXSLAVEPLYSEARCH The maximum�plytogo� value that you could possibly expect to hand to a
slave to search� Note that this value should not be excessively large� since this and APHID LOG� TABSIZE
are the leading determinants in the amount of memory used by the APHID library�

� APHID MAXMASTERPLYSEARCH The maximum depth that we expect the master should reach�

� APHID SLAVENODESTOCOMM This should be set to the number of nodes that the sequential program
visits on the type of processor being used� divided by 
��

A�� Standard Variables Used

� argv Standard argument list� Used to instantiate the slaves with the same parameters as the initial
program�

� depth The number of ply the current node is away from the root of the game tree�

� plytogo The number of ply until we reach the bottom of the game tree� In a search with no extensions
or forward pruning� plytogo � depth should be constant�

� �move�i� or �bestmove A pointer to an area of APHID MOVESIZE bytes which speci�es the move being
played�

� p hash A pointer to an area of APHID HASHTYPESIZE bytes that contains the current hash value�

� p key A pointer to an area APHID HASHKEYSIZE bytes that contains a lock which can �guarantee� the
board stored in the location of the hash table is correct�

� alpha and beta Search window used by �� implementation� they are expected to be ���bit integers�

� value and score Values of leaf nodes� they are expected to be ���bit integers for this library�
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A� Stubs To Be Written

� int aphid stub encodeinit�char �msg	 Provides the absolute master with a �����byte bu�er to
store all pertinent information about the root of the game tree� such as the position and the game
history �if this is relevant to the search algorithm�� The return value is the number of bytes used in
the string msg�

� int aphid stub decodeinit�int msg ln
 char �msg	 All other processes in the system� aside from
the absolute master� receive the message length and the message encoded by aphid stub encodeinit�
and should set the root of their game tree� accordingly�

� void aphid stub movedownpath�int num moves
 char �movepath	 Called by the slaves� a series of
num movesmoves is given in movepath� with each move being APHID MOVESIZE bytes long� The routine
should play through the moves given in movepath from the root of the game tree�

� void aphid stub moveuppath�int num moves
 char �movepath	 Called by the slaves� should com�
pletely undo any changes made by aphid stub movedownpath�

� int aphid stub iterativedeepening�int depth
 int last
 int max	 Called by the slaves� this
routine should return the search depth for the subsequent search of a leaf node� For most programs
that do iterative deepening in 
 ply steps� this should simply return last � ��

� void aphid stub preparesearch�int depth
 int plytogo
 int winstats��
 int �alpha

int �beta	 Called by the slaves� this routine sets the initial window searched by the slaves� Statistics
on previous searches and the current guessed score at the root are passed in via the winstats�� array�
The routine should set �alpha and �beta before terminating� Furthermore� this routine should ensure
that any global �alarm� states have been turned o��

� int aphid stub alphabeta�int depth
 int plytogo
 int alpha
 int beta	 Called by both
the master and the slaves� this routine should call your implementation of ��� and return the minimax
value back to the APHID library�

� int aphid stub evaluate�int depth
 int alpha
 int beta	 Called by the master the �rst time
it visits a leaf of its tree� this routine should simply call your evaluation routine and return the score
for the position reached at depth ply within the tree�

� int aphid stub stopsearch�int pass stats��	 Called only by the absolute master process� this
routine should check your timer and determine if your time limit has been exceeded for a search� If the
time limit has been exceeded� this routine should return 
� otherwise� �� A number of parameters are
passed in to this routine via the pass stats array� such as the number of uncertain nodes outstanding
for a given search� to make the decision to terminate a search more robust�

� int aphid stub visited�	 Called by the slaves� this should return a global count of the number of
nodes visited by the process�

A�� Interface Calls Used by Master and Slave

� void aphid startup�argv	 In the �rst process run� PVM is spawned on the machines speci�ed�
and a slave process is spawned with the same argument list �argv	 as the master� as speci�ed by the
aphid�config �le� In a spawned process� the APHID library never exits this function call�

� void aphid exit�	 This routine removes a process from the PVM group� and it should be called
before any process exits �due to errors or normal completion�� If the process is the absolute master�
completion of this routine ensures that all of the spawned processes have been shut down successfully�

� int aphid master�	 Returns 
 if the process is a master in the hierarchy� and � otherwise�

� int aphid slave�	 Returns 
 if the process was spawned� returns � if it is the absolute master process
which spawned the other processes� Note that a process can be both a slave and a master depending
on the hierarchy speci�ed in aphid�config�
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A�� Interface Calls Used by Masters Only

� void aphid initserach�int maxdepth	 Called by the absolute master process� this procedure pre�
pares to start a search in parallel� This routine calls aphid stub encodeinit� and then informs all
of the other processes of the current state of the game� The parameter indicates the maximum depth
that any process is nominally allowed to search� not including search extensions�

� int aphid rootsearch�int depth
 int plytogo
 int alpha
 int beta	 This routine is called
by the absolute master� instead of calling the typical �� implementaiton� It allows a master process
to do multiple passes of the tree until the search is completed� or the alarm has been signalled via
aphid stub stopsearch� If the search is allowed to complete� this routine returns the minimax value
of the tree that it has been asked to search�

� int aphid intnode premove�int depth
 char �moveptr	 Called by the absolute master� this rou�
tine stores moves made before a call to aphid rootsearch in the move list�

� void aphid endsearch�	 The absolute master should call this routine when it is �nished searching a
tree that has been called � it stops the slaves from working on the leaves of the game tree and prepares
the slaves to receive a new root position�

� void aphid horizon�int depth	 A master process calls this routine to determine if it has reached
its arti�cial horizon�

� void aphid eval leaf�int alpha
 int beta
 int depth
 char �p hash
 char �p key	
This routine determines a score value for the leaf� based on the best information available to the master�
p hash and p key are required to determine if this node has been previously visited�

� void aphid intnode start�int depth
 char �p hash
 char �p key	 Called by a master process�
this routine initializes bound gathering information for an interior node within the game tree� p hash
and p key are required to determine if this node has been previously visited�

� void aphid intnode move�int depth
 char �moveptr	 Called by a master process� this routine
inserts the move pointed to by moveptr into a hidden move list that will eventually be sent to a slave
in aphid eval leaf�

� void aphid intnode update�int depth
 int value	 Called by the master process� this routine
takes the value returned by the child �� call and uses it to update the hidden �bound� information
gathered for every node in the master�s tree�

� void aphid intnode fixbound�int depth	 In the case of a cut�o�� this routine will �x the hidden
bound information when not all moves have been fully explored�

� void aphid intnode end�int depth
 int �score	� This routine is called by a master for every in�
ternal node within the tree� and ensures that the score returned is consistent with previously gathered
information about the node�

A�� Interface Calls Used by Slaves Only

� int aphid checkalarm�	 This routine checks to see if a search should be terminated� If the value
returned is equal to �� the search should continue� If the value returned is not equal to �� the current
search has been interrupted� and we should terminate it in a �nice� way�

A�� The �aphid�con�g� File Description

� The �rst line contains two integers The number of levels in the process hierarchy� and the minimum
depth of work that can be handed out to a slave�

� The next lines each contain one integer� each integer representing the value of d� for a level in the
process hierarchy�

� The last lines indicate what machines the processes should be spawned on� and what executable is to
be run� one line per process to be spawned� By default� APHID will spawn an executable with the
same program name as the original program unless a  character appears on the line� which indicates
a separation between the machine name and the program name� The absolute master process is not
listed in this hierarchy� A process hierarchy can be speci�ed using tabs to move the start of the machine
name over in the �le�
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